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This paper presents the way of designing a computer programme made by using Visual Basic, a software which fits 
ferromagnet experimental hysteresis curves. The application makes use of the equations from Jiles-Atherton model in the 
differential form. The software itself succeeds in bringing nearer the theoretical and the experimental curves with an 
average relative deviation which for some materials is under 1%. The parameters which intervene in the model equations 
are determined with an under 2% precision. By determining them we can draw certain conclusions referring to the magnetic 
properties of magnetostriction phenomena at a micro level. The programme might be developed and used both to anticipate 
the magnetic properties of some materials which have not yet been created and to study magnetostriction phenomena. 
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1. Introduction 
 
In this paper the equations of the Jiles Atherton[1] 

model are used in order to represent the magnetic 
hysteresis curve and to fit experimentally-obtained curves 
for certain materials. The designed computer programme 
uses these equations even for the fitting of some 
magnetization curves which were obtained under stress 
and, as we shall see, its accuracy is very precise. The ”c” 
and ”a” coefficients which are part of this model’s 
equations are determined by using other equations than the 
ones used by Jiles[2,3]. The very good results obtained in 
the fitting process show that the inferred equations which 
are used in calculating these coefficients are more easily-
used in the computer programme in relation with those 
inferred by Jiles. 

There is not a unique theory to thoroughly describe the 
entire range of hysteresis curves’ shapes for ferromagnetic 
materials. The Jiles-Atherton Model describes the sigmoid 
shapes of these loops quite well. The aim of this model is 
to find the dependence of magnetization according to field 
H and which, when graphically represented, should overlap 
as well as possible the experimental hysteresis curves. This 
phenomenological model is a construction which is based 
on a series of hypotheses concerning the manifestation of 
magnetism at the micro level of matter and we are going to 
tackle these hypotheses further on. The first hypothesis 
considers the fact that each domains’ magnetic moment is 
placed in an effective magnetic field which increases 
linearly with the magnetization of the sample. He=H+αM, 
where α is a coefficient which can be interpreted as a 
measure of the coupling between the adjoining magnetic 
domains. The second hypothesis refers to the fact that the 
material has a series of anisotropies caused by impurities 
which can be in most of the cases nonmagnetic, faults, 
inhomogenities of mechanical tension, etc.- which are 

called pinning sites. Another hypothesis is that in the 
material there is a homogeneous spatial distribution of the 
pinning sites. It is known that the magnetization of the 
substance takes place through two mechanisms: the motion 
of the domain walls and the mechanism of magnetic 
moments’ rotation. The “pinning site” coining comes from 
the fact that the domain walls, during their motion under 
the action of the exterior magnetic field, remain temporary 
impeded in these zones and when the field increases with a 
minimum quantity, they will irreversibly move beyond the 
above mentioned zone. The pinning of these zones is made 
by losing energy. The model suggested by Jiles and 
Atherton draws a balance of the energies involved in the 
magnetization process, their calculation on a certain basis, 
and, in the end, an equation involving the magnetization 
and the field is obtained. This is a differential equation 
which can be directly integrated only if certain 
approximations are made, or in specific conditions. 
However, the equation can be numerically integrated. The 
dependence of the magnetization on the applied field, i.e. 
the classical hysteresis loop, can be represented with the 
help of the above mentioned equation. The fact that the 
mentioned differential equation has four parameters which 
are determined within the fitting programme must be 
underlined. The fitting procedure is based on a series of 
successive steps in which the average relative deviation in 
absolute value is gradually minimized. The average relative 
deviation is the average of the relative errors in absolute 
value calculated point by point on the entire curve of the 
hysteresis and is given by: 
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where Mi  represents the value of magnetization calculated 
by the computer programme for a Hi  field, very close to the 
experimental Hexpi and Mexpi is the value of magnetization 
eperimentally determined for the  Hexpi magnetic field. The 
computer programme makes a gradual variation of the 
magnetic field so that the theoretically evaluated points 
should not exactly cut across the experimental points but 
could be “as close as possible”. Mention must be made that 
the fitting accuracy is limited by the simplifying 
hypotheses of the model. A better fitting accuracy is 
noticed for soft magnetic materials than for hard magnetic 
materials. The fitting accuracy highly depends on the value 
of the saturation magnetization. In order to obtain an as 
good as possible fitting it is necessary that the hysteresis 
curve should get as close as possible to the saturation. 
 
 

2. The Jiles-Atherton model  
 
The Langevin [4] equation which gives the 

magnetization according to the field applied to a 
paramagnetic substance is:  
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where m is the atomic magnetic moment. If we applied the 
same equation to a ferromagnetic material modifying the H 
field with its effective value within the material 
He=H+αM, then the following equation would be 
obtained: 
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where a=KBT/µ0m will be considered a coefficient which 
will be determined as a result of the fitting process. 
However, this equation does not describe the ferromagnetic 
hysteresis correctly. The magnetization calculated with the 
help of this equation is called anhysteretic and could 
describe the phenomenon of magnetization of an ideal 
ferromagnetic media in which there are not couplings 
between the magnetic moments or between adjoining 
magnetic domains, impurities, dislocations, inhomogenities 
of mechanical tension, etc. In the case of the magnetization 
of an ideal ferromagnet (it does not have pinning sites), the 
magnetic energy spent during this process will be 
converted into potential magnetic energy in the volume of 
the magnetized material and its density is:  
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where Be is the effective magnetic induction within the 
material. In a cycle of hysteresis the term: ∫BedBe =0. 
Therefore, the value of the energy density required for the 
magnetization of an ideal ferromagnet considered in 

absolute value will be: 
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where Be =µ0(H+αM). In the case of the magnetization of a 
real ferromagnet, a part of the magnetic energy used is 
wasted when the domain walls cut across the pinning sites. 
For this situation the potential energy density stored within 
the sample, in absolute value, will be: 
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We shall note the energy density wasted when the domain 
walls cut across the pinning sites with Epin. In the above 
mentioned hypotheses, Jiles shows that this energy density 
is: 
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The difference between the densities of potential 

magnetic energy in the case of ideal and real magnetization 
situations is the real density of dissipated energy Epin. 
Therefore: 
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This equation can be adjusted to: 
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where δ=1 if dH/dt>0 and δ= -1 if dH/dt<0. 

This is one of the basic equations of the model. There 
are a few phenomenological aspects which involve the 
readjusting of equation (9) and which implicitly lead to a 
better theoretical fitting of the experimental hysteresis loop. 
Suppose the sample has reached the saturation 
magnetization and starting from here the magnetic field 
starts to decrease. Until the field changes its direction it 
does not force any motion of the domain walls. Thus, as the 
walls are impeded precisely by the pinning sites they last 
cut across when field H increased, now when H starts to 
decrease, the change of magnetization cannot be made by 
the motion of the domain walls. Implicitly, the 
magnetization cannot be calculated by using equation (9). 
We call the magnetization calculated using equation (9) 
irreversible and we note it with Mirr.  Therefore:  
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where k=K/µ0. 

From (7) we infer that the value of k is proportional to       
the average energy lost as heat when a domain wall 
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irreversibly cuts across a pinning site.     
Thus, the variation of magnetization in the saturation 

zone when the magnetic field gradually decreases is not 
due to the motion of the walls and, therefore, it has a 
reversible character (it is due both to the rotation of the 
domain moments, rotations which are caused by the 
anisotropies specific to the sample, and to the thermal 
agitation). Therefore, the total magnetization of the sample 
has both a reversible and an irreversible component: 
M=Mrev+Mirr. The irreversible component is given by 
equation (10) and the reversible one represents a certain 
percentage ”c” from the difference of irreversible and 
anhysteretic magnetizations.  

 
( )irranrev MMcM −=   (11) 

 
Thus 
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and in the saturation zone dMirr=0, this meaning that  
dMrev=c·dMan.  

Finally, the following equation yields: 
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3. The Calculation of the “a,α,k,c” parameters  
        
   Jiles and Thoelke [2,3] calculate the “a, α, k, c” 

coefficients which appear in section II by using some of the 
equations from the mentioned section. 

In these equations a series of differential 
susceptibilities (dM/dH sau dMan/dH) arises, i. e. the 
derivatives of magnetization related to the H field at 
different points of the anhysteresis curve. We shall  mark 
with χ'an, χ'anmax, χ'anc, χ'anm – the initial, remanent, coercive 
and saturation corresponding anhysteresis differential 
susceptibilities.  The diffferential susceptibilities on the 
major magnetization curve corresponding to the already 
mentioned zones- χ'in, χ'max, χ'c, χ'm. - are also included in 
these equations. 

Therefore in the vicinity of H=0, M=0, as the result of 
the serial development, we have:  
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By using 13, we have:  
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For H=0 we will have Man=0. We have in view the fact 

that in this zone the irreversible component of the 
magnetization is null (for very small fields the domain 

walls perform reversible motions.). Mirr=0.  What results 
from equation (10) is: 
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Taking into consideration equation (13) and (16) we 
may write: 
 

0H

an

0H

,
in dH

dM
c

dH
dM

==

≅=χ   (17) 

 
As a matter of fact, equation (17) presents ”c” as the 

relation between the differential magnetic susceptibilities 
calculated in the beginning zone of the curve of first 
magnetization:  
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The following two equations are presented as they 
were calculated by Jiles and Thoelke [3]: 
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MR is the remanence magnetization. 
Knowing the “c” coefficient from 18 we can find „k” 

and respectively “α” from 19 and 20. 
By deriving equation 15 in H=0 and taking 16 into 

account, we have: 
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From here the following results: 
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From 23 we have: 
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       In conclusion, if the graph of a magnetization curve, 
including the anhysteresis curve, is known, we can 
calculate the “a, α, k, c” coefficients by using the equations 
18, 19, 20, 24 and calculating the susceptibilities involved 
in these equations first. 
       In the calculations that Jiles made, the following 
approximation is used near H=0: 
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(we use equation 14). If we use equation 25, then 24 
becomes: 
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        Real situations show that the second term on the right 
side of 24 or 26 is negligible in relation with the first, 
therefore in the process of calculating the ”a” coefficient, 
the differences between the two equations do not have 
essentially different solutions. These differences are under 
0,3%. 
 

4. The method of fitting the hysteresis curves  
        
In order to fit the experimental hysteresis curves a 

mathematical technique which will be described further on 
was used. In the computer programme H takes values 
between 0 and + Hmax, then between   + Hmax and -Hmax and 
finally between –Hmax and + Hmax. The passing between the 
above mentioned extremes is made through the gradual 
modification of the value of H with a ∆H quantity much 
smaller than the difference between two consecutive 
experimental values. The value of ∆H is established in the 
reading subroutine of the initial data. Each modification of 
the field with the ∆H value involves a modification of the 
irreversible magnetization with the value ∆Mirr as given by 
equation (10), thus Mirr becomes M'irr = Mirr + ∆Mirr. For 
the calculation of the anhysteretic magnetization equation 
(3) is used and then it is replaced in equation (13) together 
with M'irr. Starting from these aspects, the compuetr 
programme is going to graphically represent the points (H, 
M) by using the above mentioned equations so that these 
points might be as close as possible to the experimental 
ones. The programme has four main parts. Zero procedure 
refers to the experimental data uploading and the 
initializing of the variables used in the programme. Here, 
we also calculate the saturation magnetization by 
extrapolating the experimental data. Procedure I consists in 
the calculation of the value of magnetization for a value of 
the variable magnetic field applied to the sample, as we 
have already described, then the calculation of the sum of 
the relative deviations of the theoretical values of 

magnetization related to the experimental ones for a cycle 
of hysteresis (the magnetic field H has values between –
Hmax and +Hmax and vice versa). This deviation is given 
by equation (1). The same procedure also graphically 
represents the points corresponding to the experimental 
hysteresis loop and to the loop calculated in the Jiles 
Atherton model. In the procedure III a certain condition 
corresponding to a minimum difference between the two 
plots is fulfilled. In fact, the execution of the programme is 
finalized then. Procedure II: the modification of the 
“a,α,k,c” parameters plus or minus the quantities “±∆a, 
±∆α , ±∆k, ±∆c ”  so that the deviation calculated in 
procedure I is minimised. Therefore, procedure II appeals, 
in turns, to procedure I for each of the four parameters. As 
a result of the appeal, the value Sj of the deviation given by 
1 is calculated each time and, in this way, by comparing it 
with its previous value, Sj-1, the choice whether to modify 
the referred parameter plus or minus one of the mentioned 
quantities is made. Procedure III: resumes the process of 
minimising the average relative deviation calculated by 
using equation (1). This procedure appeals to procedures I 
and II until the difference between two consecutive average 
relative deviations is below the fixed value (usualy less 
than 10-12) from the value of the previous deviation. This 
procedure has a subroutine through which, if the 
minimising cannot be made any longer, then the quantities 
”±∆a, ±∆α , ±∆k, ±∆c ” are lowered to the values: ”±∆a/2, 
±∆α/2 , ±∆k/2, ±∆c/2”. Then the appelation of the 
mentioned procedures is next. A simplified logical scheme 
of the programme is shown in Fig. 1. 

 

 
 

Fig. 1 The simplified logical scheme of the programme 
 
 

In order to fit the hysteresis loops for the samples 
subjected to mechanical stress we can use the same 
equations that are used by the programme for the fitting of 
the curves in which the sample is not under stress and we 
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expect that as a result of the fitting process by the computer 
all the coefficients of the model should modify more or 
less. However, the question is whether the values of these 
coefficients are the real ones or not.  

 For a given deviation between the experimental and 
theoretical plots, there could be more solutions for the 
mentioned coefficients. The real values of the coefficients 
could be calculated using the equations established in 
section III(eq.18,19,20,24). A programme subroutine can 
be appealed after the fitting has finished and this one will 
calculate of the “a, α, k, c” coefficients. Then the loop 
corresponding to the model is plotted. The practice shows 
that there are minor differences between the loops and that 
through both methods close values are obtained. As a 
matter of fact, this is the verification of the method. The 
conclusion is that the application fits the experimental loop 
through two methods. The first has in view the 
modification of the “a,α,k,c” parameters until the 
theoretical and experimental graphs are optimately close. 
The second method uses the graph from the first method 
and determines the “a,α,k,c” coefficients with the help of 
the equations from section III. In fact, this method gives the 
real values for the mentioned coefficients from a physical 
point of view. We are going to further name these methods 
1 and 2. 

 
 
5. About the interface of the programme 
  
In order for the application to be functional it is 

necessary that the experimental data should be read from a 
text file with the numbers that represent the values of the 
field and of the magnetization written on two columns with 
space between them (more than 3 characters) or separated 
by commas. This text file must have the name “his” and 
must be in the same directory as the executable file 
corresponding to our fitting programme. We specify that 
the values of the magnetization and of the field must be 
given in fundamental measuring units, A/m, otherwise the 
computer programme will have inherent errors of 
calculation. The interface is easy to use; it contains a series 
of buttons which, when clicked on, they will produce the 
specified effects. The button which starts the rolling of the 
programme has “Start” on it. By pressing it, the rolling of 
the fitting programme will start without taking into 
consideration the α coefficient. Then you may press the 
button labelled “α” and the programme will be resumed 
including this coefficient. There is a button with the help of 
which the fitting will be done more and more precisely; it 
is labelled “Error reducing”. It will be appealed the 
moment we want to get the theoretical curve closer to the 
experimental one.  

The interface has also buttons which can have as effect 
vertical or horizontal translations of the experimental 
graphic affected by measuring errors which lead to such 
deviations. There are buttons with functions representing 
the error bars (up to 5%) for each experimental point and 
displaying the graphic of the hysteresis of the λ(H) 
magnetostriction coefficient.   

Next figure (fig. 2) presents the interface of the 
application before the fitting programme rolling:   

 
 

 
 

Fig. 2 
 
 

The experimental points that form the experimental 
loop of the magnetic hysteresis can be noticed in relative 
coordinates (H/Hmax, M/MS). 

The buttons that must not be pressed appear in the 
interface only at the right moment. An optimum use is 
made after several attempts. The values of the four “a, α, k, 
c” coefficients and other values of the necessary parameters 
are displayed in the left down corner of the screen at the 
end of the programme rolling, such as: the saturation 
magnetization (which the programme determines from the 
vey beginning when the data are being uploaded through a 
fitting method), the coercive field, the remanent 
magnetization, the average relative error expressed in 
percentage (calculated by using equation 1), the number of 
experimental data, etc.  

After the ending of a fitting process, the process can be 
resumed with a more precise fitting so that the average 
relative error might drop more. We can stop resuming the 
fitting when the error starts to modify somewhere at the 
sixth decimal. After these stages the interface 
corresponding button that appeals to the procedure for the 
calculation of the coefficients using the equations deduced 
by Jiles and Thoelke can be pressed. For the last phase we 
appeal to the procedure of graphical representation with the 
help of these coefficients. 

 
 
6. Results   
       
The experimental data used by the application are 

determined by a vibrating samples magnetometer (VSM). 
The samples which were the focus of the fitting process 
are: the first one, a cobalt ferrite and, the second one a 
60%CoFe2O4 + 40%BaTiO3 composite. The values of the 
coefficients and of the other specific magnetic measures 
can be noticed in table 1. It can easily be shown that the 
value of “a” is directly proportional to the density of the 
magnetic domains and the value of “k’ is directly 
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proportional to the density of the pinning sites. Following 
the dynamic of these coefficients certain conclusions 
concerning the state and magnetic behaviour of the two 
materials can be drawn. This fitting example argues, 
through the obtained results, that the fitting programme 
proves to be useful and practical in studying magnetic 
materials. 

 
 

Tabel 1. A comparison between the coefficients of the 
Jiles model for the used ferrimagnetic samples 

 
  CoFe2O4 

Cobalt 
Ferrite 

60%CoFe2O4  
+40%BaTiO3 
Composite

ρ (g/cm3) 4,89 3,81 

Ms (kA/m) 415 156 

Mrem (kA/m) 175 62,4 

Hc (kA/m) 20 51,6 

α - 0,1560 0,85 

k(A/m) 21180 53964 

c - 0,000189 0,000074 

a(A/m) 31966 74656 

Err 0,96% 3,13% 

 
 
 

 
 

Fig. 3. Fitting graph- CoFe2O4. 
 

  A few conclusions regarding the dynamic of the 
coefficients:   

     -the increase of k implies a higher density of the 
pinning sites for the composite material; 

    -the value of a implies an almost double density of 
magnetic domains for the composite: 

    -the value of α must be understood as a measure of 
the interdomain coupling, otherwise the composite has 
more closely-related domains than the normal ferrite.  

Concerning the values obtained by the fitting 

programme it may also be added that in the case of the 
composite the decrease of the saturation magnetization and 
the increase of the coercive field take place, which was 
expected because the barium titanite leads to the increase 
of the number of the pinning sites within the structure of 
the magnetic material.   

 

 
 

Fig. 4. Fitting graph-60%CoFe2O4 + 40% BaTiO3 
 
 
 
7. Conclusions 
 
The designed software based on Jiles model can be 

used in fitting the experimental hysteresis loops of 
magnetic materials with high accuracy. The purpose of the 
fitting programme was the well-precise determination of 
the values of the model’s coefficients for a certain material. 
This purpose was achieved. Moreover, this calculating 
programme can also be used for fitting the magnetization 
curves of samples under mechanical stress or under other 
interaction conditions and, in this way, the dynamic of the 
model’s coefficients in the given situations can be 
observed. These coefficients, through their physical 
meanings, can provide useful information regarding the 
microstructure of magnetic materials and of the interactions 
at this level. Besides these aspects, the application also 
calculates the values for: the saturation magnetization, the 
remanent magnetization, the coercive field and the 
susceptibilities presented in section III. It may be noticed 
that in the case of the composite the average relative 
deviation between the graphs is about three times bigger 
than in the case of the cobalt ferrite. This thing shows that 
the more we deviate from a homogenous and isotropic 
structure of the magnetic material, the bigger the fitting 
errors are just because the model does not take into 
consideration heterogeneous structures. 
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